<u>CGMS</u>

Introduction to CGMS and the CGMS database

Raymond van der Wijngaart, Allard de Wit

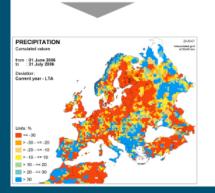
Content

- TODAY (afternoon)
 - CGMS system
 - Database

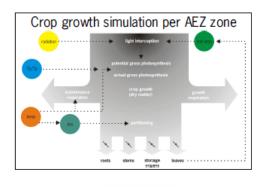
- TOMORROW (morning)
 - Maintenance CGMS
 - Visualization

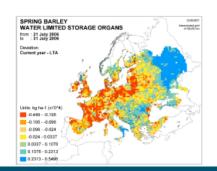
Content

- CGMS overview
- Level 1: Weather monitoring
- Level 2: Crop simulation
- Level 3: Yield forecasting


CGMS overview

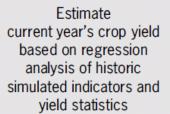
± 2000 stations


Daily values 1975-today

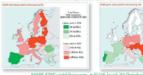

Data quality checking and interpolation to agro climatic zones

Crop, soil, land use

AEZ zone (combination of agro climatic zones and soil mapping units)



Official harvested yields


Administrative regions

1975-last year

stat_yield = trend + f(sim_yield)

CROPS	EU-za yield (uha)					
		2001	Apripun		9.85%	
TOTAL CENEWLS	58	5.0	5.0	19.3	1.1	
Softwheat	4.5	6.0	5.6	-8.0	15	
Disruite infriest	3.0	2.10	3.0	-24.5	-61	
Social wheat	5.9	5.4	53	-8.6	11	
total badey	4.0	4.2	4.1	-12.5	-0.3	
Codemicales	64	8.1	79	-43	10	
Othercessis (1)	1.7	3.3	3.1	-18.0	6.8	

CGMS overview

- From point model to regions
 - Files => Tables
- Store tables in relational database
 - Base and derived tables (views)
 - Domains
 - Constraints
 - Primary keys
 - Foreign key
 - Stored procedures
 - Indices

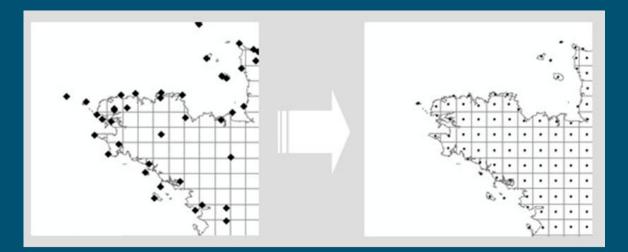
CGMS overview

Collection of software

- Oracle / MS Access
- SqlDeveloper / sqlplus
- Cgms.exe
- SupitConstants.exe
- CgmsStatTool.exe
- scripts / procedures / packages

Visualization

- ArcGis / FME / QGIS / ...
- Custom build viewers

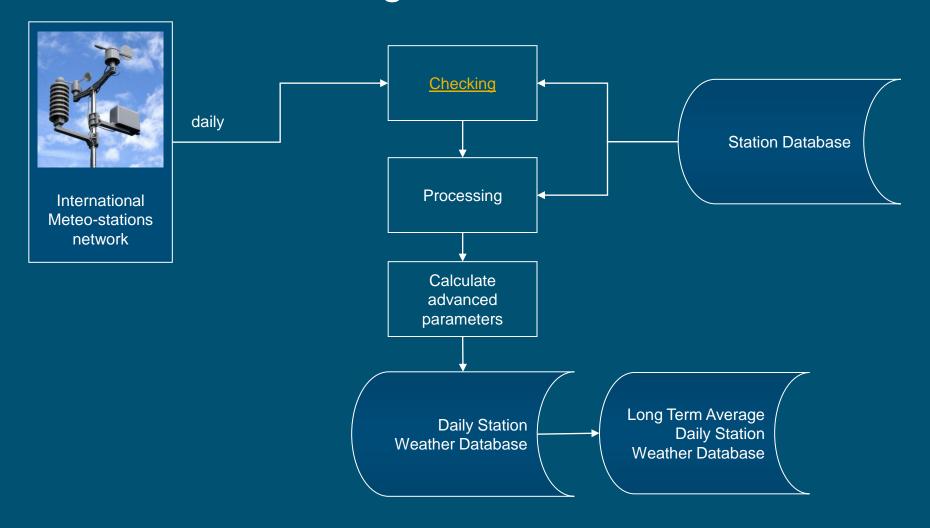

Weather Monitoring: objective

- Monitoring weather conditions
 - Evaluation of abnormal and alarming situations
 - Drought
 - Extreme temperatures
 - Extreme rainfall during flowering or harvest
 - etc.
- Input for the crop simulation
 - Station weather or model weather
 - Quality checked
 - Complete spatial & temporal coverage

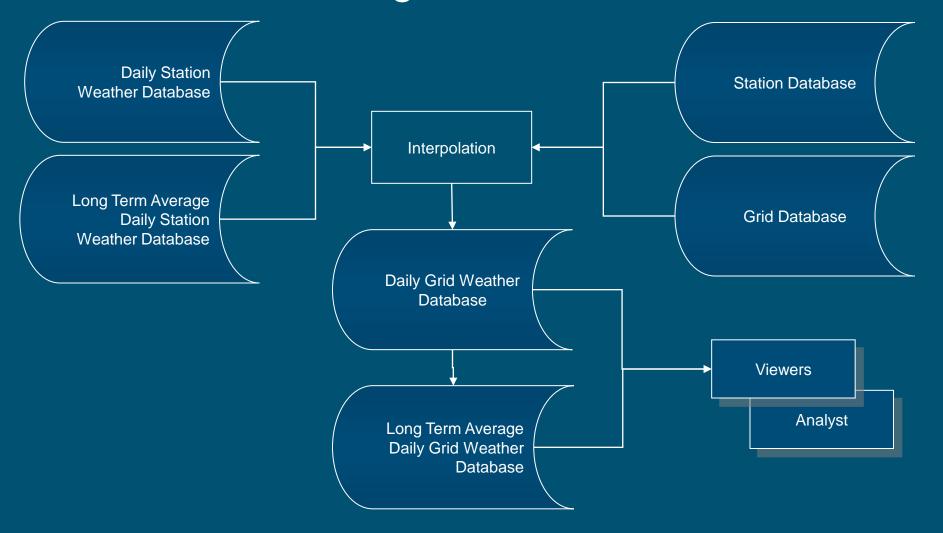
Weather Monitoring: interpolation to grid

Interpolation

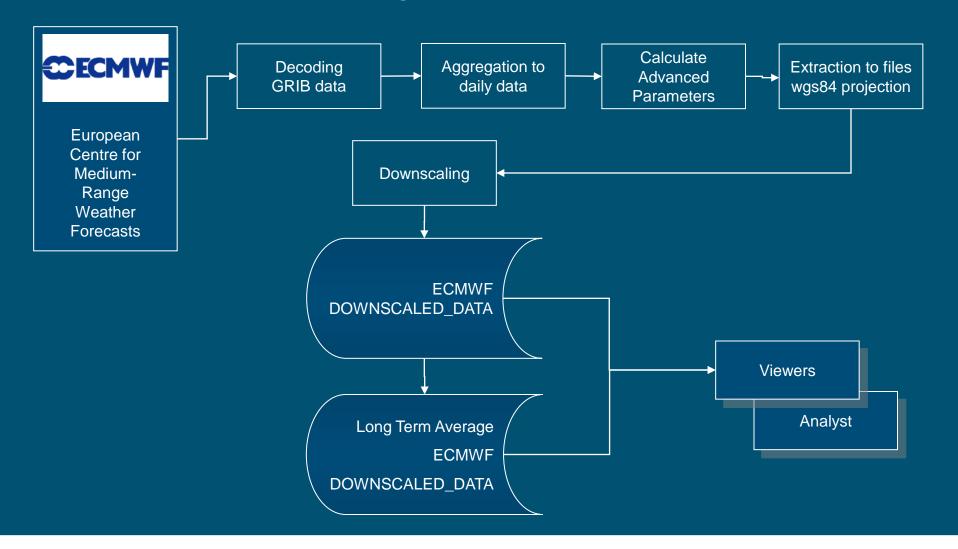
Downscaling

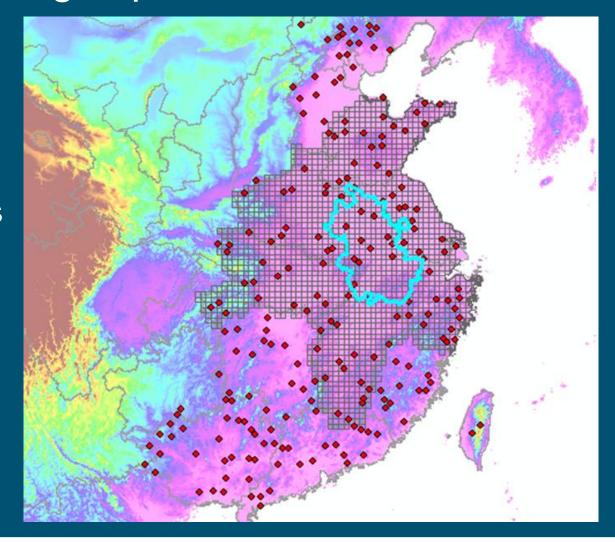

Observations

- Precipitation
- Temperature (maximum, minimum)
- Measured radiation
- Sunshine
- Cloud cover
- Vapour pressure
- Wind speed
- Snow
- Humidity



- Calculation advanced parameters
 - Calculated radiation at surface (Angström / Supit / Hargreaves)
 - Evaporation of water surface (E0)
 - Evaporation of wet bare soil (ES0)
 - Reference evapotranspiration (ET0)



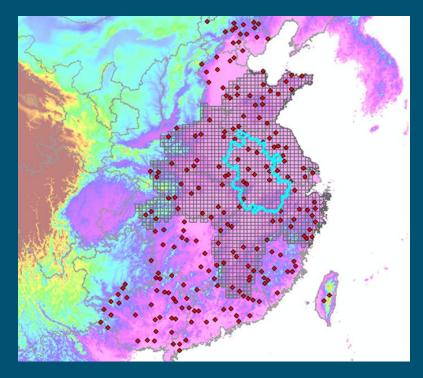


Weather Monitoring: forecasted weather

- Anhui db:
 - 25 km grid
 - Admin regions
 - Pseudo stations


```
    GRID (description of grid)
    WEATHER_STATION (description of weather stations)
    METDATA (meteo data)
    SYSCON (system constants)
    SUPIT_REFERENCE_STATIONS
```

CROP (list of crops)
 CROP_GROUP (list of crop groups)
 STAT_CROP (relation statistics - simulation)
 NUTS (description of admin regions)



- Open CGMS_ANHUI.mdb
- Questions:
 - What data is stored in tables GRID / METDATA?
 - What is the primary key of table GRID / METDATA?
 - What is the relation between METDATA and WEATHER_STATION?
 - What attributes have WEATHER_STATION and GRID in common?

GRID & WEATHER_STATION

- Latitude / Longitude
- Altitude
- Distance to coast
- Climate barrier (uniform region)
- Similarity (set)score
 - Groups: Rain / Temp / Rest
 - (average) Distance
 - (average) Difference in altitude
 - (average) Difference in distance to coast
 - Different or same uniform region
 - (Distance between grid and center of gravity of stations)
 - (Factor based on number of stations)

Name	Source	Procedure
CGMS_SYSLOG	-	-
SUPIT_CONSTANTS	SUPIT_REFERENCE_STATIONS	SupitConstants.exe
	WEATHER_STATION	
CALCULATED_WEATHER	METDATA	CGMS.exe
	SUPIT_CONSTANTS	
	WEATHER_STATION	
REFERENCE_WEATHER	WEATHER_STATION	long term average
	METDATA	based on reliable
	CALCULATED_WEATHER	stations
WEATHER_DATA_AVAILABILITY	METDATA	CGMS.exe
	CALCULATED_WEATHER	
	WEATHER_STATION	
	REFERENCE_WEATHER	
GRID_WEATHER	METDATA	CGMS.exe
STATIONS_PER_GRID	CALCULATED_WEATHER	
STATIONS_PER_GRID_CURRENTYEAR	WEATHER_STATION	
	REFERENCE_WEATHER	
	WEATHER_DATA_AVAILABILITY	
	GRID	
	SYSCON	
LONG_TERM_AVERAGE_GRID_WEATHER	GRID	lta grid weather.sql
	GRID_WEATHER	

Questions:

- What is the difference between SUPIT_REFERENCE_STATIONS and SUPIT_CONSTANTS
- Can you think of an alternative way to fill SUPIT_CONSTANTS?
- What is the relation between METDATA and CALCULATED_WEATHER?
- Which stations were used to interpolate weather for grid cell 75170 in the year 2002?
- What were the similarity scores?

Weather Monitoring

Questions:

- How long is the grid weather archive in ANHUI.mdb?
- Interpolate the next year with CGMS.exe
- Check the length of the grid weather archive in ANHUI.mdb

Weather Monitoring

Questions on weather monitoring?

Crop simulation: objective

- Assess influence of weather on crop growth
 - Above ground biomass
 - Storage organs biomass
 - Leaf Area Index
 - Total water requirement
 - Total water consumption
 - Relative soil moisture
 - Crop development stage
 - Precocity
 - Nr and duration of heat waves around crop development stage
 - Rain or temperature around crop development stage
- Input for the quantitative yield forecasting

Crop simulation: input data

- Weather data
- Crop parameters
- Soil map
- Administrative regions
- Spatial schematization

Crop simulation: crop parameters

- Growth behaviour category
 - CROP_PARAMETER_VALUE
 - PARAMETER_DESCRIPTION
 - VARIETY_PARAMETER_VALUE
- Spatial/temporal variation category
 - CROP_CALENDAR
 - CROP_GROUP: suitability for soil types

Crop simulation: crop parameters

Questions:

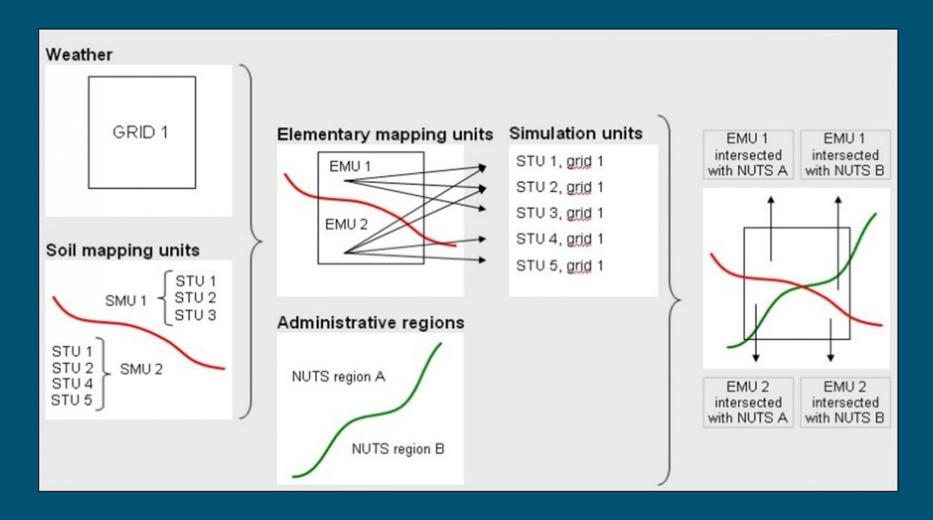
- In what spatial resolution are the crop parameters stored?
- What tsum1 and tsum2 are used for winter wheat?
- How is the start of the season defined?
- How is the end of the season defined?

Crop simulation: Soil map

- Soil characteristics
 - SOIL_TYPOLOGIC_UNIT (STU)
 - ROOTING_DEPTH
 - SOIL_PHYSICAL_GROUP
 - SUITABILITY (suitable stu per crop_group)
 - SITE (infiltration and surface storage parameter)
- Spatial distribution of STU's
 - SOIL_MAPPING_UNIT (SMU)
 - SOIL_ASSOCIATION_COMPOSITION
 - SMU_SUITABILITY (suitability of smu per crop_group)

Crop simulation: Administrative regions

- Hierarchical structure of regions
 - NUTS
 - Different levels
- Aggregation
 - EUROSTAT (YIELD)
 - AGGREGATION_AREAS (CULTIVATED AREA)


Crop simulation: Spatial schematization

- Wofost acts on weather, soil and crop
- Unique combination of weather, soil and crop
 - Intersection GRID and Soil map units (SMU's)
 - ELEMENTARY_MAPPING_UNIT (EMU)
 - Intersection EMU and NUTS:

```
EMU_PLUS_NUTS
EMU_PLUS_NUTS_LANDCOVER
SIMULATION_UNIT
```


Crop simulation: Spatial schematization

Crop simulation: Spatial schematization

- Question:
 - How many times is Wofost run for grid cell 69163?

Crop simulation: output tables

Name	Source	Procedure				
INITIAL_SOIL_WATER	SIMULATION_UNIT	isw_01_first_year.sql				
	SOIL_PHYSICAL_GROUP	isw_02_other_years.sql				
	SOIL_TYPOLOGIC_UNIT	isw_03_update.sql				
	ROOTING_DEPTH					
CROP_YIELD	CROP	CGMS.exe				
	CROP_CALENDAR					
	CROP_PARAMETER_VALUE					
	PARAMETER_DESCRIPTION					
	VARIETY_PARAMETER_VALUE					
	GRID					
	GRID_WEATHER					
	ELEMENTARY_MAPPING_UNIT					
	SIMULATION_UNIT					
	SIMULATION_LOG					
	INITIAL_SOIL_WATER					
	SYSCON					
	SITE					
	SOIL_TYPOLOGIC_UNIT					
	ROOTING_DEPTH					
	SOIL_PHYSICAL_GROUP					
	SMU_SUITABILITY					
	SOIL_ASSOCIATION_COMPOSITION					
GRID_YIELD	CROP	CGMS.exe				
	CROP_YIELD					
	EMU_PLUS_NUTS_LANDCOVER					
	SMU_SUITABILITY					
NUTS_YIELD	CROP	CGMS.exe				
(level 3)	NUTS	or				
	CROP_YIELD	aggr_nuts_yield.sql				
	EMU_PLUS_NUTS_LANDCOVER					
	SMU_SUITABILITY					
NUTS_YIELD	CROP	CGMS.exe				
(level 2, 1, 0)	NUTS	or				
	NUTS_YIELD	aggr_nuts_yield.sql				
	AGGREGATION_AREAS					

Crop simulation

Questions:

- How long is the CROP_YIELD archive in ANHUI.mdb?
- Simulate the next year with CGMS.exe
- Check the length of the CROP_YIELD archive in ANHUI.mdb

Crop simulation

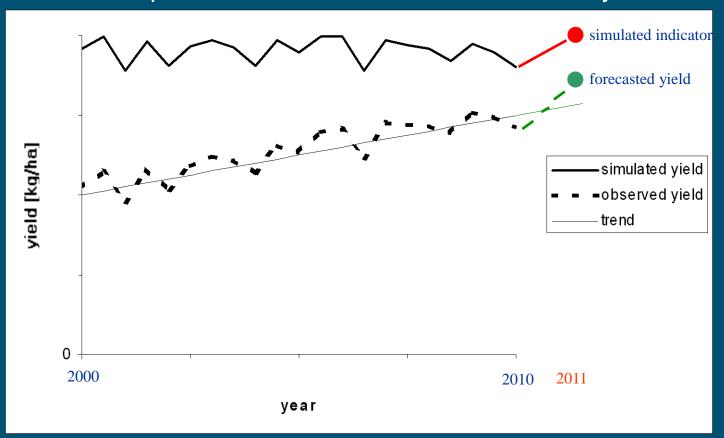
Questions:

- How long is the GRID_YIELD archive in ANHUI.mdb?
- Aggregate the next year with CGMS.exe
- Check the length of the GRID_YIELD archive in ANHUI.mdb
- Do the same for NUTS_YIELD

Crop simulation

Questions on crop simulation?

Yield forecasting: objective


 Provide yield statistics of major crops at EU and national level, as accurate and quick as possible, while ensuring independence from all external sources.

Predict the "official statistical" crop yield: forecasted_yield = trend + f(simulated_yield)

Yield forecasting: overview

- Long term technological trend
- CGMS predicts deviation from trend caused by weather

Yield forecasting: tables

- Input
 - EUROSTAT
 - DATA_FOR_YIELD_FORECAST
 - MODEL_EXCL_YEARS
 - MODEL_INCL_INDICATORS
 - MODEL_REGR_INDICATORS
 - RUN
- Output
 - FORECASTED_NUTS_YIELD
 - FORECASTED_NUTS_YIELD_HIS

Any questions?

End

© Wageningen UR

