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EXECUTIVE SUMMARY

This document reports on the evaluation of the accuracy of the BioMA models WARM and
WOFOST in reproducing official yield statistics of rice in the Jiangsu province (China) using
remotely sensed (RS) sowing dates and the maximum values of the Normalized Difference
Vegetation Index (NDVlnax) to update the simulation of leaf area index (LAl). The BioMA
models WARM and WOFOST were parameterized for rice within the activities reported in
the E-AGRI report D32.3.

The simulated outputs in the period 2003-2010 were aggregated at the province level and
then processed via the CGMS Statistical Tool Box to derive the yield forecasts. For each
model, four simulation runs were performed: (1) without the assimilation of remotely
sensed data, (2) forcing the model with the RS NDVlnay, (3) forcing the model with RS
sowing dates, (4) forcing the model with RS NDVIy.x and sowing dates. The forecasts
obtained with forced simulated indicators were compared to those derived by the BioMA-
WARM and the BioMA-WOFOST models without the assimilation of exogenous data
(option 1). Forecasting events were triggered in different moments during the crop cycle to
assess the impact of RS data assimilation while the crop is approaching maturity.

The assimilation of RS sowing dates and NDVI s values into the BioMA-WOFOST and
BioMA-WARM model determined a decided improvement of the accuracy in reproducing
rice yield statistics in the Chinese Jiangsu province. On average, the BioMA-WOFOST model
without forcing (R*=0.769) obtained better results than BioMA-WARM (R*=0.693). The only
assimilation of RS NDVI,.x (option 2) determined an increase in the predictive ability of the
two models, more pronounced for the BioMA-WOFOST model (R*=0.825), whereas the
assimilation of RS sowing dates (option 3) led the BioMA-WARM model to obtain the best
improvements with respect to the simulations carried out without forcing (option 1). The
combination of the assimilation of RS sowing dates and NDVI . led to the best results
when the forecasting was carried out at DOY 260 and 280 (R? higher than 0.9), which
correspond to the period in which most of the grid cells reached the NDVI .« value. These
tests were performed with simulations carried out at potential level, hence, the results
obtained by the two models could be further improved by the combination of the
assimilation of RS data with the simulation of the yield losses due to rice spikelet sterility
and of blast disease, in order to increase the adeherence of the simulated system to the
real one.
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1. Introduction

The assimilation of remotely sensed (RS) information into crop growth models is an
effective method to reduce the large uncertainty in the agro-meteorological, pedological
and management data used as input for spatially distributed model applications (Aggarwal,
1995; Launay and Guerif, 2005). The spectral profile of canopies retrieved from remote
sensing provide timely qualitative and quantitative data on the evolution of the biophysical
parameters referred to crop growth and development. This represents a clear advantage
with respect to conventional field surveys, as it offers the potential for monitoring crop
conditions across heterogeneous environments and over large areas (Bauer, 1975;
Walburg et al., 1982).

The detection of rice cropped areas via remote sensing images can be more effective and
efficient than for other crops, given the peculiarity of the agricultural management of
paddy rice (Pei et al., 2011): after the preparation of the fields (e.g., plowing, harrowing
and leveling), flooding irrigation is usually applied before sowing (or transplanting
seedlings from a nursery bed). The crop cycle then develops through the vegetative and
reproductive stages until harvest, with water present in the paddy at different depths
during most of the season until draining prior to harvesting. The main applications of
remote sensing for rice yield monitoring involve the crop detection, the paddy field
mapping and the yield estimation or prediction (Park et al., 2013).

The new generation of advanced optical sensors, including the Moderate Resolution
Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites provide
shortwave infrared bands that are sensitive to vegetation moisture and soil water (Xiao et
al., 2002). Different algorithms were developed using MODIS data to identify paddy rice
fields, using the temporal profiles of the Normalized Difference Vegetation Index (NDVI)
(e.g., Okamoto and Fukuhara, 1996; Okamoto and Kawashima; 1999; Van Niel et al., 2003;
Boschetti et al., 2009; Manfron et al., 2012). NDVI is also one of the most used vegetation
indices to derive rice leaf area index (LAI), via empirical relationships (e.g., Chen and Yang,
2005; Wang et al., 2007) or via bidirectional reflectance distribution function (BRDF)
models (e.g., Roujean et al., 1992; Wanner et al., 1995). The former approach is widely
adopted due to the small computation effort (Price and Bausch, 1995; Fassnacht et al.,
1997; David et al., 1999).

In this report we evaluate the accuracy of the BioMA-WOFOST and of the BioMA-WARM
models in reproducing rice official yields statistics in the Jiangsu province in the period
2003-2010, when RS sowing dates and NDVI data are used to force the two models.
Spatially distributed simulations were carried out in the grid cells of the Chinese Jiangsu
province and the outputs were aggregated and post-processed using the CGMS Statistical
Tool Box to derive yield forecasts.
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2. Materials and methods

2.1. Processing satellite data

The satellite data used to derive sowing dates and NDVI profiles in the Jiangsu province
were the 16-day composite MODIS Surface Reflectance product MYD13Q1 (sensor:
MODIS-Aqua) and MOD13Q1 (sensor: MODIS-Terra), downloaded from the United States
Geological Survey (USGS) data base server (http://glovis.usgs.gov/). Every composite
provides reflectance data on 4 spectral bands at 250-m spatial resolution, the bands are:
bl-red (620-672nm), b2-near infrared (841-890nm), b3-blu (459-479nm), b7-medium
infrared. This product type is derived from a multi-step process that consider atmospheric,
clouds and aerosol corrections and accounts for each pixel the best reflectance data
registered during the time composite window. The temperate rice cultivated areas in the
Jiangsu province and the meteorological grid (spatial resolution 25x25 km) are shown in
Figure 1.

Figure 1: Rice cropped areas in the Jiangsu province and the meteorological grid (25x25
km) used to perform the simulations

The continuous temporal signal of spectral indices was processed by the PhenoRice
algorithm (Manfron et al., 2012) to perform rice detection and rice seasonal monitoring.
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This algorithm works with a rule based approach to identify rice when a clear flooding
condition is detected, followed by a consistent and rapid crop growth.

Four steps are needed to complete the workflow: a) acquisition of RS data; b) data pre-
processing to compute the noise and the NDVI spectral indices; ¢) smoothing of NDVI
series via a polynomial function to reduce the impact of cloud contamination with a
Savitzky-Golay filter (Luo et al., 2005); d) signal analysis and rice phenological detection.
The main phenological stages of rice can be identified by the algorithm via different
criteria. Four indicators are automatically computed (Figure 2, source Manfron et al.,,
2012): the day of year (DQY) of possible emergence (MIN), the early growing phase (Start
of Season, SoS), the DOY in which maximum NDVI (NDVlyay) is reached (MAX, around
heading) and a DOY close to the physiological maturity (End of Season, EoS).

| Veg - ind MAX

EoS

SoS
MIN

| |

Figure 2: Timely occurrence and representation of phenological stages (MIN, MAX, SoS,
EoS). Source Manfron et al. (2012)

Figure 3 shows an example of the NDVI profile and of the metrics that were extracted
during the temporal series analysis: the green line represents a temporal series of NDVI
data (real NDVI values were multiplied by 10* for computational purposes, y-axis). The
example shows the identification of two crops during the analysed year, one in the second
guarter and the other in the third quarter of the year.
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Figure 3: Example of a NDVI profile of one grid cell and one year under analysis, in which
two crop cycles can be identified

For each grid cell in the Jangsu province and for each year, the RS indicators were
computed and used to force the BioMA-WOFOST and the BioMA-WARM models.

In particular, the sowing DOY (in correspondence to the MIN indicator), and the DOY of
occurrence of NDVInax and the NDVI . value were used (see paragraph 2.3). The RS data
provider was the IREA-CNR (http://irea.cnr.it/).

2.2. Analysis of remotely sensed data

The total combinations of RS sowing dates and NDVI.x data used to force the BioMA-
WOFOST and BioMA-WARM models was 648 (81 grid cells x 8 years).

The box plots presented in Figure 4 and Figure 5 display the distributions of the NDVInayx
values and the corresponding days of the year in the period 2003-2010 in the Jangsu rice
cropped area.
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Figure 4: Boxplot showing the distributions of the maximum NDVI in the Jiangsu rice
cropped area in the period 2003-2010.

The analysis of the distribution of the NDVI.x values in the 2003-2010 cropping seasons
highlights a very similar average value and heterogeneous distributions across the years,
with 2008 presenting the smallest variability of NDVI.x and 2003 and 2010 the highest
one. The minimum value reached by NDVI,. in the whole series is 0.437, whereas the
maximum is 0.918.

300
Day of 290
the year 280

270

LA blnadd

220
210
200

o

o

2003 2004 2005 2006 2007 2008 2009 2010
Cropping season

Figure 5: Boxplot showing the distributions of the day of the year in which maximum NDVI
was reached in the Jiangsu rice cropped area in the period 2003-2010.

The analysis of the distribution of the DOY in which NDVI.y is reached in the 2003-2010
cropping seasons highlights a constant minimum value (DOY 201) and very similar
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RS Data



Crop Monitoring as an E-agriculture tool

in Developing Countries E-AGRI
E-AGRI GA Nr. 270351 = ulty
P08 - R

distributions, except for 2006 and 2010 cropping seasons, which present less spread of
data. The percentage of grid cells as a function of the DOY in which NDVI. is reached is
shown in Figure 6. Since DOY 220, the number of grid cells is very low, then the maximum
rate of increase is reached in the DOYs 230-250. After DOY 260, NDVI .« is achieved in all
the grid cells of the Jangsu rice cropped area.

Percentage of forced grid cells

%
0.8

0.6 -
0.4 -

0.2

210 220 230 240 250 260 270 280
day of the year

Figure 6: Percentage of grid cells in the Jangsu province in which NDVI . was reached as a
function of time in the period 2003-2010 (source IREA-CNR data).

Figure 7 presents the distribution of the MIN indicator (used as a proxy of the sowing date,
see paragraph 2.1.) in the Jangsu province during 2003-2010 cropping seasons.
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Figure 7: Boxplot showing the distributions of the sowing day retrieved from remote
sensing in the Jiangsu rice cropped area in the period 2003-2010.

The analysis of the distribution of the RS sowing dates highlights a quite variable pattern
across the years, with 2007 presenting on average the earliest sowing dates, with high
variability across the Jangsu rice cropped area (minimum DOY=113, average DOY=151,
maximum DQY=174). On the contrary, 2008 cropping season presents the smallest
variability in the RS sowing dates (minimum DOY=133, average DOY=152, maximum
DOY=168).

2.3. The NDVI-LAI empirical function

An empirical function (Wang et al., 2007) to derive rice LAl values from NDVI data (fnovi_tai)
was used to force the BioMA-WARM and the BioMA-WOFOST models. The NDVI-LAI
relationship was developed starting from field data collected in an experimental farm of
the Zhejiang University, Hangzhou, China (30°14’ N, 120°10" E), which presents
agrometeorological conditions similar to those experienced by rice in Jiangsu. Three rice
varieties (Jiazao 324, Xieyou 9308 and Xiushui 110) were grown in 2002 and 2003 cropping
seasons in a completely randomized design with four repeats. After the spectral
measurements were carried out (ASD FieldSpe Pro FRTM, Analytical Spectral Devices), LAI
of each plot was measured via a destructive method. An exponential relationship between
LAl and NDVI (R*=0.8563) was then found (Equation 1).

LAI = 0.1026g*392N0V (1]

The plot of the fypv_wal function is shown in Figure 8.
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Figure 8: Leaf area index (LA, m*> m™) values computed as a function of NDVI with the
empirical function developed by Wang et al. (2007)

This function was implemented in the UNIMI.Forcing component (see E-AGRI report
D35.3). This component was then coupled with the BioMA-WOFOST and the BioMA-WARM
models, both implementing a dynamic approach for daily partitioning of assimilates into
leaves, stems and storage organs. The NDVIy.x was converted into LAl via the fypvi i
function and it was given as input to the BioMA-WOFOST and BioMA-WARM model in the
corresponding DOY (Figure 9).

[ NDVIvaluesin Jangsu province ]
NDVI ax
...... .@ o @. .@..@ .O .@)
time
f
A NDVI_LAI

LAI

1Al beforeupdating v

LAl afterupdating /|

>

time
[ BioMA-WOFOST and BioMA-WARM models J

Figure 9: Schematic representation of the methodology adopted to force the BioMA-
WOFOST and the BioMA-WARM models with LAl derived by NDVI . data.
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After the forcing event and within the same model time step, the biomass of the plant
organs (i.e., leaves, stems and storage organs) was derived from the new LAl value and
from the updated specific leaf area (SLA, m* kg™).

The help and the code documentation files of the UNIMI.Forcing component are available
at http://agsys.cra-cin.it/tools/.

2.4. Simulation experiment desing

A four-step simulation experiment design was defined to assimilate the RS data into the
BioMA-WOFOST and the BioMA-WARM models (Figure 10). Each crop model was run in
the Jiangsu rice cropped area in the period 2003-2010 (i) without the assimilation of RS
data, (ii) by updating the LAl derived by the NDVI.x value in the corresponding DOY; (ii) by
assimilating the RS sowing dates (see paragraph 2.1), (iv), by combining the assimilation of
RS sowing dates and NDVIay data.

Crop model Simulation run
: : : No Forcing
[ BioMA-WOFOST ]—— P .
: ; : Forcing
: : L\ sowing dates
: N I | Forcing
[ BioMA-WARM i\ NDVI
: : H Forcing )
i L sowing dates & NDVI

............................................... Lo

Figure 10: Simulation experiment design followed to evaluate the impact of the assimilation
of remote sensing data into the BioMA-WOFOST and the BioMA-WARM model

For each simulation run, the outputs produced by the BioMA-WOFOST and BioMA-WARM
models in each combination cropping season x grid cell were aggregated into decades to
the Jiangsu province level using the CGMS database and then they were processed via the
CGMS Statistical Tool Box to be compared with official yield statistics. The CGMS Statistical
Tool Box is able to autonoumously select up to four model outputs (i.e., the indicators) to
develop a multiple regression model using yearly official yields as dependent variable in
different periods of the year (i.e., decades). The best regressive model (i.e., the one with
the highest correlation index R® between simulated and official yields) obtained by each
simulation run (i.e., no forcing, forcing with NDVI,,.,, forcing with RS sowing dates, forcing
with RS sowing dates and NDVI,,) was chosen for the comparison. The forecasting were
carried out at DOY 240, 260, 280, 300 and 320 in order to assess the impact of the forcing
events during the crop cycle.
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3. Results and Discussion

3.1. Analysis of the impact of forcing on time series of
simulated outputs

The impact of forcing the two BioMA crop models with RS NDVI data markedly depends
upon (i) the NDVInax value and (ii) the timing of the forcing event (DQY), as shown in Figure
11.

When the forcing event occurs after the peak of LAl (i.e., close to flowering stage) as in the
grid cell 514 (year 2008), the impact on the aboveground biomass simulated by the BioMA-
WOFOST (red lines) and the BioMA-WARM (blue line) models is very large. This is due to
the combination of the low LAl value derived by the low RS NDVI,.x and by the late
phenological stage: the simulated rice crop is in the ripening phase, therefore no new
green leaf area is emitted because of the whole partitioning of the assimilates to the stems
and panicles.

A different situation can be observed in the grid cell 4 (year 2003): even if the forcing event
causes a reduction of LAl simulated by both the models, the impact in the accumulation of
aboveground biomass is smoothed. In this case the simulated crop has time to produce
new green leaves (especially according to the BioMA-WARM model), thus maintaining a
close canopy stage (LAl around 3 m? m™) during a large part of the cycle.
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Figure 11: Simulations performed with the BioMA-WARM and the BioMA-WOFOST models
in the grid cells 514 (year 2008) and 4 (year 2003). Comparison of the LAl and aboveground
biomass accumulation without the updating of RS data and with the assimilation of
NDVIpox.

Figure 12 shows the impact of the implementation of the sowing dates retrieved from
remote sensing (see paragraph 2.1) on the evolution of LAl and aboveground biomass
simulated by the BioMA-WARM (blue lines) and BioMA-WOFOST (red line) models. The
anticipation of the sowing date determines higher and very similar LAl values for both the
models, which in turns causes a higher accumulation of biomass with respect to the
simulations carried out with a fixed sowing date (DOY 166). It can be noticed that the
BioMA-WARM model computes a higher value of aboveground biomass than the BioMA-
WOFOST one, even if the LAl values are similar.

On the contrary, the simulations performed with a fixed sowing date determine large
differences in the LAl evolution patterns, leading to large dissimilarities in the simulated
aboveground biomass, especially in the first-mid part of the crop cycle.
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Figure 12: Simulations performed with the BioMA-WARM and the BioMA-WOFOST models
in the grid cells 514 (year 2003). Comparison of the LAl and aboveground biomass
accumulation by implementing the sowing date retrieved from remote sensing and a fixed
sowing date (DOY 166)

Figure 13 shows the LAl and aboveground biomass accumulation simulated by the BioMA-
WARM and the BioMA-WOFOST models in the grid cell 514 (year 2003). In the picture, the
outputs of the four simulation runs (see paragraph 2.4.) are shown. The anticipation of the
sowing date (i.e., retrieved from remote sensing) causes an increment in the accumulation
of aboveground biomass for both the models. The forcing of the LAl values derived by
NDVImax has a completely different impact according to the shift in the sowing dates. As
already observed in Figure 10, when the sowing date is derived from remote sensing, it can
be noticed a marked anticipation of the crop cycle. This in turns determines that the
forcing event occurs very close to the flowering phase, thus causing a large impact in the
accumulation of biomass. As a consequence, the simulations carried out without the
implementation of the forcing event (i.e., highest aboveground biomass simulated with an
anticipated sowing date) present an opposite pattern with respect to the ones in which
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NDVlnax is implemented, both for BioMA-WARM and BioMA-WOFOST models (i.e., highest
aboveground biomass simulated with a delayed sowing date).
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Figure 13: LAl simulations performed with the BioMA WOFOST model in the CGMS grid cell
31044 and year 2005. Comparison of the LAl trends without the updating of remotely
sensed data and with the assimilation of maximum NDVI using the four functions tested.

3.2. Impact of the assimilation of remote sensing data in
the forecasting system

The official yields statistics at the province level in Jiangsu (China) were used to evaluate
the impact of the assimilation of RS data into the BioMA-WARM and the BioMA-WOFOST
models. The coefficient of determination (R?) between the official rice yield statistics and
the yields computed by the multiple regressions with simulated outputs as predictors is
reported in Table 1. The forecasting were carried out at DOY 240, 260, 280, 300 and 320.
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Table 1: Correlation (R?) values obtained by the multiple regression models with simulated
outputs as predictors and official statistics. For each BioMA model (WARM and WOFOST),
the four strategies of assimilation of RS data were applied. Forecasting of the official
statistics was carried out in the period 2003-2010 at DOY 240, 260, 280, 300 and 32. Bold
identifies the best result within the same DOY of forecasting.

No Forcing Forcing Forcing
Model DOY Forcing NDVI sowing sowing + NDVI
240 0.653 0.613 0.938 0.983
_ 260  0.748 0.817 0.889 0.947
BioMA- 280 0552 0.595 0.534 0.583
WARM : : : :
300  0.708 0.810 0.526 0.572
320 0.806 0.760 0.946 0.808
240 0.906 0.993 0.997 0.999
_ 260  0.817 0.902 0.746 0.958
BioMA- 280  0.742 0.784 0.729 0.900
WOFOST : : : :
300  0.704 0.749 0.719 0.755
320 0677 0.696 0.718 0.736

The correlation values obtained by the BioMA-WARM and BioMA-WOFOST models without
the assimilation of RS data were never ranked 1° among the ones obtained by the three
strategies used to force the models (see paragraph 2.4).

Considering the BioMA-WARM model, the only assimilation of RS NDVI,.« led to the best
results in two out of five cases (i.e., forecasting carried out at DOY 280 and 300), as the
combination of the assimilation of sowing dates and NDVI (i.e., forecasting carried out
at DOY 240 and 260). The correlation values obtained by the BioMA-WOFOST model clearly
show the improvement due to the combination of the assimilation of RS NDVI,ax and
sowing dates, as they are always the highest.

Figure 14 reports the average correlation values and the standard deviation computed
between the values obtained by the BioMA models for the different forecasting decades.
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Figure 14: Average correlation (R?) values obtained by the BioMA-WARM and the BioMA-
WOFOST models in forecasting the official rice yield statistics in the Jiangsu province
(China) in the period 2003-2010. The results obtained by the models without forcing and by
the models forced with the different RS data assimilation strategies are shown.

On average, the BioMA-WOFOST model without forcing (R?=0.769) obtained better results
than BioMA-WARM (R2=0.693). The only assimilation of RS NDVI,.x determined an
increase in the predictive ability of the two models, more pronounced for the BioMA-
WOFOST model (R*=0.825). The assimilation of RS sowing dates caused an opposite
situation: the accuracy of the two BioMA models increased, more markedly for the BioMA-
WARM one (R?*=0.767). The combination of the assimilation of both sowinig dates and
NDVInax determined a remarkable increase in the average correlation values obtained by
the two models (R*=0.775 for BioMA-WARM and R?=0.870 for BioMA-WOFOST). Standard
deviations computed between the DOYs of the forecasting (i.e., 240, 260, 280, 300 and
320) were higher when the assimilation of sowing dates was implemented, especially for
the WARM model.

Figure 15 reports the official rice yield statistics in the period 2003-2010 in Jiangsu
province compared with the predictions of the BioMA models in the DOY of forecasting in
which the differences betweent the simulation runs (see paragraph 2.4) are maximized. It
can be observed a remarkable improvement in the reproduction of the interannual
fluctuations of rice yields for both the BioMA-models due to the implementation of RS
data.
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Figure 15: Official rice yield statistics (t ha, empty circles)in the Jiangsu province in the
period 2003-2010 compared with the predictions of the multiple regression built with the
outputs of the BioMA models WARM and WOFOST without forcing (red circles) and with
the assimilation of RS sowing dates and NDVI,,. (blue circles) in the DOY of forecasting in
which the differences are maximized.

Figure 16 and Figure 17 reports the correlation values (R%) obtained by the two BioMA
models in each DOY of forecasting for the four simulation runs (see paragraph 2.4).
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Figure 16: Correlation values (R°) obtained by the regressive models using simulated
outputs of the BioMA-WARM model as predictors between official rice yields statistics in
the Jiangsu province (period 2003-2010). Forecasting were carried out at decades 24, 26,
28, 30 and 32. The four histograms refer to the four strategies of assimilation of RS data

(i.e., no forcing, forcing with NDVI ., forcing with RS sowing dates and forcing with RS
sowing dates and NDV/ )

At DOY 240, the impact of the assimilation of the only sowing dates allowed the BioMA-
WARM model to obtain a considerable improvement in the prediction, whereas the only
assimilation of NDVIax did not increase the correlation with official yields. The assimilation
of RS sowing dates and NDVI.x determined a remarkable increase in the accuracy of the
prediction at DOY 240 and 260, in which the obtained R* values were very close to 1. This
period corresponds to the maximum rate of increase of grid cells in which NDVIax was
reached (Figure 6). The predictive ability of the BioMA-WARM model strongly decreased
when the forecasting were made at DOY 280 and 300. At DOY 300, the best results were
achieved by the simulation run in which only NDVI,,x was assimilated into the model. Close
to physiological maturity (DOY 320), the performances of the multiple regressive models
were quite similar and good, with the simulation run in which only sowing dates were
assimilated obtaining the best result (R?=0.946).
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Figure 17: Correlation values (R?) obtained by the regressive models using simulated
outputs of the BioMA-WOFOST model as predictors between official rice yields statistics in
the Jiangsu province (period 2003-2010). Forecasting were carried out at decades 24, 26,
28, 30 and 32. The four histograms refer to the four strategies of assimilation of RS data
(i.e., no forcing, forcing with NDVI ., forcing with RS sowing dates and forcing with RS
sowing dates and NDV/ )

It can be noticed a clear decreasing trend in the predictive ability of the multiple
regressions built with the outputs of the BioMA-WOFOST model, according to the progress
of the rice crop cycle. At DOY 240, the impact of the three strategies of assimilation of RS
data was very similar and led to very good results (R values were very close to 1). The
impact of the assimilation of RS sowing dates and NDVI. allowed to maintain a high
accuracy until DOY 280 (R2=0.9OO), whereas the simulation run in which no assimilation of
RS data was performed determined a steep decrease of the predictive ability (R>=0.817 at
DOY 260 and R?=0.742 at DOY 280). At DOY 300 and 302 the performances of the four
simulation runs were very similar and lower than the ones obtained by the WARM-model.
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4. Conclusions

The assimilation of RS sowing dates and NDVl.x values into the BioMA-WOFOST and
BioMA-WARM model determined an overall remarkable improvement of the accuracy in
reproducing rice yield statistics in the Chinese Jiangsu province in the period 2003-2010.
The combination of the assimilation of RS sowing dates and NDVI .« led to the best results
when the forecasting was carried out at DOY 260 and 280, which correspond to the period
in which most of the grid cells reached the NDVI.x value. In general, the assimilation of
the only NDVI.x value (i.e., using a fixed sowing date) led to a lower improvement of the
correlation between simulated and official yields than the assimilation of RS sowing dates.
It can be noticed a decreasing trend in the predictive ability of the two models, especially
for the BioMA-WOFOST one, when the forecasting is made during the ripening phase until
physiological maturity. This is probably due to the lowering of the model ability in
reproducing leaf area evolution after the implementation of the forcing event. Since only
the potential level was simulated, without the consideration of the impact of biotic and
abiotic stresses, this consideration cannot be considered as a general judgment of the
models performances; conversely, it suggests to combine the assimilation of RS data with
the simulation of the impact of rice spikelet sterility and of blast disease, in order to
increase the adeherence of the simulated system to the real one.
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